Structure, Thermodynamic, and Magnetic Properties of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ with $\operatorname{Ln}=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, and Gd

M. Andersson, J. Grins, and M. Nygren ${ }^{1}$
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Received February 8, 1999; in revised form May 10, 1999; accepted May 21, 1999

Abstract

The structure of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ has been determined and refined using the Rietveld method and combined $\mathrm{CuK} \alpha_{1} \mathrm{X}$-ray and neutron powder data in space group $P \overline{1}$ with unit cell $a=15.972(2), \quad b=7.1927(7), c=6.9160(6) \AA, \alpha=96.299(4)$, $\beta=131.643(3), \gamma=121.438(3)^{\circ}, V=353.83(6) \AA^{3}$ and $Z=2$, to $R_{\mathrm{F}}=\mathbf{2 . 0 \%}$ (neutron data) and $R_{\mathrm{F}}=6.2 \%$ (X-ray data). The structure is closely related to the monoclinic $\mathrm{La}_{4} \mathrm{PdO}_{7}$ structure and exhibits Nd atoms coordinated by seven O atoms and Pd atoms coordinated by a square of \mathbf{O} atoms. Isolated chains of trans-corner-sharing PdO_{4} squares are straight in the $\mathrm{La}_{4} \mathrm{PdO}_{7}$ structure and staggered in the $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ structure. Electron and X-ray powder diffraction data show that $L n_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{Sm}$, Eu , and Gd is isostructural with $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$. The enthalpies of dissolution of $\operatorname{Ln}_{4} \mathrm{PdO}_{7}(\operatorname{Ln}=\mathrm{La}, \mathrm{Nd})$ in 1.000 M HCl have been measured with an in-house built calorimeter, and from these values the enthalpies of formation for the compounds have been calculated. The decomposition temperatures of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ with $L \boldsymbol{L}=\mathrm{La}$ and Nd in oxygen have been determined by thermogravimetric measurements and found to decrease from $1645 \pm 10 \mathrm{~K}$ for $\mathrm{La}_{4} \mathrm{PdO}_{7}$ to $1540 \pm 10 \mathrm{~K}$ for $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$. Using these data, an Ellingham diagram has been constructed assuming temperature-independent $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ and $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$. The magnetic susceptibilities of $\operatorname{Ln}_{4} \mathrm{PdO}_{7}$ with $\boldsymbol{L n}=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$, recorded in the temperature range $10-320 \mathrm{~K}$, were found to be in agreement with the expected ones for noninteracting $\mathbf{L n}^{\mathbf{3 +}}$ ions. © 1999 Academic Press

Key Words: Ln - Pd oxides; structures; thermodynamic and magnetic properties.

INTRODUCTION

In a previous article (1) we reported that the compound $\mathrm{La}_{4} \mathrm{PdO}_{7}$ exhibited a three-way catalytic behaviour, i.e., converted CO, NO, and propene simultaneously to CO_{2}, N_{2}, and $\mathrm{H}_{2} \mathrm{O}$ after being activated in a slightly reducing atmosphere. The catalytic behavior was ascribed to the formation of nano-sized particles of Pd on the surfaces of

[^0]micrometer-sized $\mathrm{La}_{2} \mathrm{O}_{3}$ grains, and it was found that $\mathrm{La}_{4} \mathrm{PdO}_{7}$ was easily reformed by heat treatment of the reduced material in air. We recently investigated the analogous compounds $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ with $\mathrm{Ln}=\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, and Gd $(2,3)$ and found that they behave very much like the lanthanum compound, that is, we observed the formation of nano-sized Pd particles on the surface of the $L n_{2} \mathrm{O}_{3}$ grains. The X-ray powder patterns of the $L n_{4} \mathrm{PdO}_{7}$ compounds with $L n=\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, and Gd were similar to that of $\mathrm{La}_{4} \mathrm{PdO}_{7}$, but they could not be indexed with a similar monoclinic unit cell as that given for $\mathrm{La}_{4} \mathrm{PdO}_{7}(10)$. We now therefore report the structure of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$, determined and refined using the Rietveld method with combined $\mathrm{CuK} \alpha_{1}$ X-ray and neutron powder data, and present evidence that the Sm -, Eu-, and Gd-analogues are isostructural with $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$. In this connection it can be noted that $\mathrm{Gd}_{4} \mathrm{PdO}_{7}$ has never before been reported to form.
$L n_{4} \mathrm{PdO}_{7}$ phases with $\mathrm{Ln}=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}$, or Eu are known to be thermally very stable in air (4-6), having decomposition temperatures exceeding that of PdO by $285-510 \mathrm{~K}$ depending on Ln element. No thermodynamic data are available for these compounds, but such data would be very useful, however, in connection with studies of the reduction/oxidation, i.e., activation/regeneration, processes of these compounds used as exhaust gas catalysts, as well as for the prediction of their thermal stability as a function of the oxygen partial pressure. We have therefore collected enthalpy data for the La and Nd compounds by measurement of their heats of dissolution in 1.000 M HCl , using an in-house built calorimeter; and their decomposition temperatures in oxygen have been determined by thermogravimetric measurements. By combining these data, the Gibbs free energies of formation of the two $L n_{4} \mathrm{PdO}_{7}$ oxides from $L n_{2} \mathrm{O}_{3}, \mathrm{Pd}$, and $\mathrm{O}_{2}(\mathrm{~g})$ have been calculated as a function of temperature and plotted in an Ellingham diagram. A plot of decomposition temperature vs oxygen pressure has also been constructed for the two compounds.

Finally, we will also present magnetic susceptibility data for the $L n_{4} \mathrm{PdO}_{7}$ compounds with $L n=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, or Gd.

EXPERIMENTAL

The $L n_{4} \mathrm{PdO}_{7}$ compounds with $L n=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, or Gd were synthesized as follows: (i) PdCl_{2} (p.a. Fluka) and $L n_{2} \mathrm{O}_{3}$ with $L n=\mathrm{Nd}$, Sm, Eu, and Gd $(L n=\mathrm{Nd}, \mathrm{Sm}$, and $\mathrm{Gd} 99.9 \%$ Johnson Matthey, $\mathrm{Eu}_{2} \mathrm{O}_{3}$ 99.9\% Aldrich) or $\mathrm{La}\left(\mathrm{NO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (p.a. Merck), respectively, were dissolved in fuming HCl (p.a. Merck) and boiled to dryness; (ii) the residue was slowly heated to 823 K and held at this temperature for one to two hours; (iii) the materials were then ground and heated slowly in air in an oven to $1223-1373 \mathrm{~K}$, depending on the $L n$ element. After several regrindings and up to 12 days of heat treatment, almost phase pure compounds were obtained, containing typically a few percent of $\mathrm{Ln}_{2} \mathrm{O}_{3}$ and $L n_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$ as measured by their relative XRPD intensities.

The use of monophasic samples for calorimetric measurements is of great importance, so special care was taken to eliminate $L n_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$ and to minimize and quantify the amounts of ${L n_{2} \mathrm{O}_{3} \text { present. In the } \mathrm{Nd}_{4} \mathrm{PdO}_{7} \text { case, }}_{\text {, }}$ $\mathrm{Nd}_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$ was eliminated by reducing $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ in a flowing gas mixture of $\mathrm{CO} / \mathrm{He}$ followed by 161 hours of reoxidation in air (see Ref. 2 for details), whereas just prolonged heat treatment (12 days) yielded an $\mathrm{La}_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$-free sample in the lanthanum case. The $L n_{2} \mathrm{O}_{3}$ levels present in the samples were estimated by standard additions of $\mathrm{Ln}_{2} \mathrm{O}_{3}$ to the $L n_{4} \mathrm{PdO}_{7}$ samples, whereby the relative intensities of two strong and nonoverlapping $L n_{2} \mathrm{O}_{3} / L n_{4} \mathrm{PdO}_{7}$ peaks were plotted vs the mole fraction of $L n_{2} \mathrm{O}_{3}$ added. The amounts of $L n_{2} \mathrm{O}_{3}$ originally present in the samples were then found by linear extrapolation: the x-axis intercepts corresponded to 4.2 and $3.5 \mathrm{wt} \%$ of $L n_{2} \mathrm{O}_{3}$ in the $\mathrm{La}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ samples, respectively.
The X-ray powder diffraction (XRPD) patterns were recorded with a focusing camera of Guinier-Hägg type, using $\mathrm{CuK} \alpha_{1}$ radiation and Si as internal standard. The films were evaluated with a film scanner system (7). XRPD data for Rietveld refinements of the structures of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{Nd}, \mathrm{Sm}$, and Gd were collected with a STOE STADI/P diffractometer, using $\mathrm{Cu} K \alpha_{1}$ radiation, a sample in symmetrical transmission mode, and a linear positionsensitive detector covering 4.6° in 2θ. Constant wavelength ($\lambda=1.47 \AA$) neutron powder diffraction data of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ were collected at the Swedish research reactor R2 in Studsvik. Data were collected between 10° and 128°. The Rietveld structure refinements were made with the GSAS program package (8), which allows several data sets to be used simultaneously.

A JEOL JSM-820 scanning microscope equipped with an energy-dispersive X-ray (EDX) microanalysis system (LINK AN 10000) was used to determine the metal content of the formed compounds. Based on more than 20 EDX point measurements we found that the metal content in all samples was in good agreement with the theoretical $L n / \mathrm{Pd}$ ratio (80/20) required for $L n_{4} \mathrm{PdO}_{7}$.

The decomposition temperatures of the $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ compounds with $L n=\mathrm{La}$ and Nd were determined in a thermogravimetric (TG) apparatus (Setaram TAG 24) in oxygen, using a heating rate of $1.25 \mathrm{~K} / \mathrm{min}^{-1}$.

Magnetic measurements were carried out in a weak-field ac-susceptometer (Lake Shore 7130) in the temperature range $12-320 \mathrm{~K}$.

An in-house built calorimeter was used for the measurements of the enthalpies of dissolution of $L n_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{La}$ and Nd . It consisted of a $10-\mathrm{cm}^{3}$ plastic container which was filled with $5.00 \mathrm{~cm}^{3}$ of 1.000 M HCl and placed inside a plastic-foam insulation block. The solution was stirred at 250 rpm by means of a magnetic stirrer, and its temperature was monitored by a Cu -constantan thermocouple mounted inside a small glycerol-filled glass tube placed in contact with the solution. An ice/water bath was used as cold junction. The temperature was first allowed to stabilize and was then recorded every second, using a computer and the program Quadstar (Balzers). After about 100 s of recording, a weighed and well-ground amount of the sample to be dissolved was introduced into the container by means of a $1.0 \mathrm{~cm}^{3}$ disposable syringe with cut-off top, into which the powder had been placed. After 5000 s the data collection was aborted. The obtained data, see Fig. 1a, were corrected for nonadiabatic conditions in the following way: first, the times for the onset of heat evolution $\left(t_{\text {add }}\right)$ and the maximum temperature were established, and the time difference between them multiplied by 2.5 (named t_{25} below) was taken as the maximum time needed for full dissolution of the sample in question. The validity of this assumption was checked for all samples by stopping subsequent experiments just before t_{25}, followed by centrifugation and weighing of

FIG. 1. Temperature vs time plot for dissolution of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ in 1.000 M HCl showing (a) the original curve, (b) a curve fitted to the cooling branch of the original curve, and (c) the calculated adiabatic curve. T_{s} and T_{f} correspond to the starting and final temperature used for thermodynamic calculations, and the vertical line denotes $t=t_{\mathrm{c}}=t_{\mathrm{add}}+t_{25}$, the constants being defined in the text.
the undissolved material (if any). In all cases the undissolved amount was less than $2 \mathrm{wt} \%$ of the amount added.

Well beyond the completion of the chemical reaction, the heat flow is proportional to the time derivative of the temperature $d T / d t$ and, since the former (Newton's law of cooling) is proportional to the temperature difference $T-T_{0}$ ($T=$ internal temperature, $T_{0}=$ external), the differential equation [1] holds.

$$
\begin{equation*}
d T / d t=-\mathrm{C} \cdot\left(T-T_{0}\right) \tag{1}
\end{equation*}
$$

The reaction was assumed to be completed at $t_{\text {add }}+t_{25}=t_{\mathrm{c}}$ and from this point Eq. [1] can be integrated in the form

$$
\begin{equation*}
T(t)=\left(T_{\mathrm{c}}-T_{0}\right) \cdot \exp \left[-\mathrm{C} \cdot\left(t-t_{\mathrm{c}}\right)\right]+T_{0} \tag{2}
\end{equation*}
$$

where T_{c} corresponds to the temperature observed at the time t_{c}. By fitting data recorded from t_{c} forward into Eq. [2] one obtains the coefficients C and T_{0}. Subsequently, the adiabatic temperatures $T_{\text {adi,i }}$ (i.e., temperatures in absence of heat loss) can be obtained, point by point, by adding to the first temperature point to be compensated T_{1} the value $\Delta T_{1}=\mathrm{C}\left(T_{1}-T_{0}\right) \Delta t(\Delta t=1 \mathrm{~s})$, to the next temperature point T_{2} the value $\Delta T_{1}+\mathrm{C}\left(T_{2}-T_{0}\right) \Delta t, \ldots$, to the temperature point T_{n} the value $\Delta T_{1}+\cdots \Delta T_{n-1}+\mathrm{C}\left(T_{n}-T_{0}\right) \Delta t$. One obtains (see Fig. 1c) a diagram with a plateau value T_{f}, which corresponds to the final adiabatic temperature. The first point to be compensated, T_{1}, was the first measurement with $T \geq T_{0}$ or in cases with T_{0} being somewhat less than the starting temperature the compensation was started when T was 0.1° higher than the starting temperature.

The starting temperature T_{s} (calculated as the average temperature 20 s before the addition of the sample) was subtracted from the final adiabatic temperature T_{f} (see Fig. 1), and this temperature difference was divided by the amount of dissolved material to yield the temperature rise per mole, which is proportional to the molar enthalpy of dissolution. Compensation for the undissolved fraction of material was performed, as well as a correction for the $L n_{2} \mathrm{O}_{3}$ content of the $L n_{4} \mathrm{PdO}_{7}$ samples. Typical values of the constants discussed above are (values taken from Fig. 1): $T_{\mathrm{s}}=296.80 \mathrm{~K}, T_{\mathrm{f}}=305.85 \mathrm{~K}, T_{\mathrm{c}}=301.31 \mathrm{~K}, T_{0}=297.61 \mathrm{~K}$, $\mathrm{C}=3.812 \times 10^{-4} \mathrm{~s}^{-1}, t_{25}=2593 \mathrm{~s}$, and $t_{\mathrm{add}}=102 \mathrm{~s}$.

To test the accuracy of the calorimeter, different oxides (MgO p.a. Merck, $\mathrm{Y}_{2} \mathrm{O}_{3}$ grade fine $\mathrm{HCST}, L n_{2} \mathrm{O}_{3}$ with $L n=\mathrm{La}, \mathrm{Nd}$, and Gd as above) were dissolved, and the obtained molar enthalpies of dissolution $\left(\Delta \mathrm{H}_{\text {dis }}\right)$ were compared to each other. $\mathrm{Nd}_{2} \mathrm{O}_{3}$ was used as calibration compound, and it was assumed that the dissolution yields hydrated metal ions and $\mathrm{H}_{2} \mathrm{O}(1)$. The $\Delta \mathrm{H}_{\text {dis }}$ values are presented in Table 1 togheter with the corresponding literature values (9) and the obtained t_{25} values. It is obvious from Table 1 that our in-house built calorimeter yields quite

TABLE 1
Measured Molar Enthalpies of Dissolution ($\Delta \mathbf{H}_{\mathrm{dis}}^{\circ}$) for Selected Oxides and their Corresponding Literature Values (9)

	Measured $\Delta \mathrm{H}_{\mathrm{dis}}^{\circ}$ $\left(\mathrm{kJ} / \mathrm{mol}^{-1}\right)$	Literature value for $\Delta \mathrm{H}_{\mathrm{dis}}^{\circ}$ $\left(\mathrm{kJ} / \mathrm{mol}^{-1}\right)$	Deviation from literature value $(\%)$	$t_{25}(\mathrm{~min})^{a}$
$\mathrm{Nd}_{2} \mathrm{O}_{3}$	Reference	-442.2	-	4.0
MgO	-155.2	-151.5	-2.5	3.0
$\mathrm{La}_{2} \mathrm{O}_{3}$	-487.5	-478.1	-2.0	3.3
$\mathrm{Y}_{2} \mathrm{O}_{3}$	-390.7	-399.2	+2.2	46.3
$\mathrm{Gd}_{2} \mathrm{O}_{3}$	-396.8	-413.8	+4.2	47.6

Note. $\mathrm{Nd}_{2} \mathrm{O}_{3}$ has been used as calibration compound.
${ }^{a}$ Defined in the text.
accurate $\Delta \mathrm{H}_{\text {dis }}$ values, but the data indicate that the dissolution characteristics $\left(t_{25}\right)$ of the samples could affect the results, as materials that dissolve more slowly tend to give somewhat higher values of $\Delta \mathrm{H}_{\mathrm{dis}}$.

RESULTS AND DISCUSSION

Powder Diffraction

The Guinier-Hägg XRPD patterns for ${L n_{4}}_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{La}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$ are shown in Fig. 2 for the 2θ-range $26-33.5^{\circ}$. The pattern for the La compound was found to agree well with the reported structure and monoclinic unit cell of $\mathrm{La}_{4} \mathrm{PdO}_{7}(a=13.469(1), b=4.0262(1)$, $c=9.448(1) \AA, \beta=133.42(1)^{\circ}(10)$), while those for the other Ln compounds, although similar, could not be indexed on the basis of this type of cell. They could, however, be indexed with C-centered triclinic cells of similar dimensions but with

FIG. 2. Guinier-Hägg patterns of $L n_{4} \mathrm{PdO}_{7}$ with $\mathrm{Ln}=\mathrm{La}-\mathrm{Gd}$. Si was added as an internal standard.
slightly obtuse α and γ angles, e.g., for $\mathrm{Nd}_{4} \mathrm{PdO}_{7} a=$ 13.186(2), $b=3.9701(6), c=9.426(1) \AA, \alpha=91.761(8), \beta=$ 133.843(3), $\gamma=91.20(1)^{\circ}$. A triclinic cell of this kind would imply a direct lowering of the space group symmetry from $C 2 / m$ for $\mathrm{La}_{4} \mathrm{PdO}_{7}$ to $C \overline{1}(P \overline{1})$ for the other compounds.

Electron diffraction patterns of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ were, however, not compatible with the triclinic cell above. They could instead be accounted for by a primitive triclinic cell which is approximately related to the monoclinic $\mathrm{La}_{4} \mathrm{PdO}_{7}$ cell by;

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{tri}}=-1 / 2 \cdot \mathbf{a}_{\mathrm{mon}}-3 / 2 \cdot \mathbf{b}_{\mathrm{mon}}+\mathbf{c}_{\mathrm{mon}} \\
& \mathbf{b}_{\mathrm{tri}}=-1 / 2 \cdot \mathbf{a}_{\mathrm{mon}}+1 / 2 \cdot \mathbf{b}_{\mathrm{mon}}-\mathbf{c}_{\mathrm{mon}} \\
& \mathbf{c}_{\mathrm{tri}}=1 / 2 \cdot \mathbf{a}_{\mathrm{mon}}-1 / 2 \cdot \mathbf{b}_{\mathrm{mon}} .
\end{aligned}
$$

This type of triclinic cell was subsequently verified by electron diffraction to be valid also for $\mathrm{Sm}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Gd}_{4} \mathrm{PdO}_{7}$. It thus contains the same number of ${L n_{4}} \mathrm{PdO}_{7}$ formula units as the monoclinic C-centered cell of $\mathrm{La}_{4} \mathrm{PdO}_{7}$ but is primitive triclinic.

Unit cell parameters were ultimately determined by Rietveld refinements, based on Guinier-Hägg data with Si as internal standard and using atomic coordinates derived from neutron and/or X-ray diffractometer data (see below). They are given in Table 2. The estimated standard deviations (esd) in these are probably underrated by factors $2.5-3$, since serial correlation (11) in the refinements was not accounted for. For comparison, the indexed Guinier-Hägg powder pattern of $\mathrm{Gd}_{4} \mathrm{PdO}_{7}$ is listed in Table 3, up to the 20th observed line. The indexed pattern yielded the unit cell parameters $a=15.80(3), b=7.12(1), c=6.795(8) \AA, \alpha=$ $95.7(1)^{\circ}, \beta=131.25(7)^{\circ}, \gamma=122.8(1)^{\circ}, V=334.3 \AA^{3}$ and the cell figure-of-merit $\mathrm{M}_{20}=25$. These cell parameters agree well within error with those obtained from the Rietveld refinement, but they have notably higher esd. The unit cells

TABLE 2
Unit Cell Parameters for $\boldsymbol{L n}_{\mathbf{4}} \mathbf{P d O}_{7}$

	La	Nd	Sm	Eu	Gd
$a(\AA)$	16.080	$15.972(2)$	$15.905(2)$	$15.833(1)$	$15.795(1)$
$b(\AA)$	7.1556	$7.1927(7)$	$7.1678(7)$	$7.1350(6)$	$7.1142(5)$
$c(\AA)$	7.0289	$6.9160(6)$	$6.8541(7)$	$6.8138(6)$	$6.7853(5)$
$\alpha\left({ }^{\circ}\right)$	96.475	$96.299(4)$	$95.969(4)$	$95.886(3)$	$95.723(2)$
$\beta\left({ }^{\circ}\right)$	132.894	$131.643(3)$	$131.358(3)$	$131.279(2)$	$131.241(2)$
$\gamma\left({ }^{\circ}\right)$	119.163	$121.438(3)$	$122.342(3)$	$122.496(3)$	$122.771(2)$
$V\left(\AA^{3}\right)$	372.14	$353.83(6)$	$343.16(6)$	$338.10(5)$	$333.50(4)$

[^1]TABLE 3
Powder X-Ray Diffraction Pattern of $\mathbf{G d}_{4} \mathbf{P d O}_{7}$

$h k l$	$2 \theta_{\text {obs }}$	$\Delta 2 \theta$	$d_{\text {obs }}(\AA)$	$I / I_{0}(\%)$
$\overline{1} 10$	13.313	0.003	6.65	2
$\overline{1} \overline{1} 1$	24.119	0.015	3.687	2
200	25.626	-0.004	3.473	7
$\overline{2} 20$	26.807	0.004	3.231	1
$\overline{4} 02$	27.655	0.007	3.223	9
$\overline{2} \overline{2} 1$	29.904	-0.010	2.986	75
$\overline{4} 21$	30.047	0.001	2.972	82
$\overline{2} \overline{1} 1$	30.407	-0.004	2.937	6
$\overline{3} \overline{1} 2$	30.985	0.006	2.884	51
$\overline{2} 02 /$	31.701	0.001	2.821	100
$\overline{5} 11$		-0.019		
$\overline{4} 01$	32.744	0.008	2.733	5
110	32.940	-0.001	2.717	46
101	37.080	0.011	2.423	3
$\overline{3} \overline{1} 1$	38.919	-0.004	2.3122	1
$\overline{\overline{2}} \overline{2} 2$	39.182	0.003	2.2973	3
$\overline{3} \overline{1} 1$	43.347	0.009	2.0857	15
020	43.692	0.007	2.0701	4
$\overline{7} 13$	44.070	0.008	2.0532	30
$\overline{5} \overline{1} 3$	44.443	-0.009	2.0368	4
$\overline{2} \overline{2} 3$	45.634	-0.006	1.9864	10

Note. $\Delta 2 \theta=2 \theta_{\text {obs }}-2 \theta_{\text {calc. }} \lambda=1.5406 \AA$.
used are not reduced. Corresponding reduced cells are obtained by the transformation of axes $\mathbf{a}_{\mathbf{r}}=\mathbf{c}, \mathbf{b}_{\mathbf{r}}=-\mathbf{b}$, $\mathbf{c}_{\mathbf{r}}=\mathbf{a}+\mathbf{b}+2 \cdot \mathbf{c}$, yielding e.g. in the case of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ a reduced unit cell $a=6.916, b=7.193, c=7.930 \AA, \alpha=$ $70.44^{\circ}, \beta=72.16^{\circ}, \gamma=83.70^{\circ}$.

The variation of the unit cell parameters of the ${L n_{4}} \mathrm{PdO}_{7}$ compounds with the Shannon-Prewitt (eight-coordinated) ionic radius of the $L n^{3+}$ ions (12) is shown in Fig. 3. The unit cell volumes follow Vegard's law well.

FIG. 3. Unit-cell volume for $L n_{4} \mathrm{PdO}_{7}, L n=\mathrm{La}-\mathrm{Gd}$, vs the ionic radius of the Ln^{3+} ion.

Refinement of the Structure of $\mathrm{Nd}_{4} \mathrm{PdO}_{7} U \operatorname{sing} X-R a y$ and Neutron Powder Data

The atomic coordinates for $\mathrm{La}_{4} \mathrm{PdO}_{7}$ (10) were transformed to the triclinic cell and used as a starting set. The structure was refined using simultaneously the X-ray ($20=10-80^{\circ}$, with 428 reflections) and neutron data ($2 \theta=10-85^{\circ}$, with 552 reflections). Different starting configurations were tested to ensure a global minimum in the refinements. The calculations converged if structural and profile-fitting parameters were refined in succession. The largest correlation coefficient for positional parameters was 0.89 , observed between the x and z coordinates for O . The backgrounds were fitted by 15 Chebyshev polynomial coefficients and the X-ray reflection profiles modeled by a pseudo-Voigt function (13) with 7 coefficients. A DebyeScherrer absorption correction was applied for the neutron data. The 2θ scales for the two data sets were adjusted to each other by refining the neutron wavelength and the cell parameters. The secondary phases $\mathrm{Nd}_{2} \mathrm{O}_{3}$ (14) and $\mathrm{Nd}_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$, with atomic coordinates taken from $\mathrm{La}_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$ (15), were included with collective thermal parameters, lattice parameters, and phase fractions refined. A total of 82 variables were used in the final refinement, including 33 positional parameters and 3 collective thermal parameters for the Nd, Pd, and O atoms in $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$. The obtained atomic coordinates are given in Table 4 and selected bond distances and angles are given in Table 5. The fit between observed and calculated patterns for the X-ray and neutron data is illustrated in Figs. 4 and 5, respectively. The corresponding refinement indices are $\mathrm{w} R_{\mathrm{p}}=0.037, R_{\mathrm{p}}=0.028$, $D \mathrm{wd}=1.18, \quad R_{F}=0.020$ for the neutron data and $\mathrm{w} R_{\mathrm{p}}=0.035, R_{\mathrm{p}}=0.023, D \mathrm{wd}=0.49, R_{F}=0.062$ for the

TABLE 4
Structural Parameters Refined from X-Ray and Neutron Powder Diffraction Data for $\mathbf{N d}_{4} \mathbf{P d O}_{7}$

Atom	Site	x	y	z	$U_{\text {iso }}\left(\AA^{2}\right)$
Nd1	$2 i$	$0.7785(15)$	$0.1563(23)$	$0.7811(30)$	$0.008(1)$
Nd2	$2 i$	$0.2820(15)$	$0.6830(21)$	$0.7737(29)$	$0.008(1)$
Nd3	$2 i$	$0.1421(11)$	$0.0074(18)$	$0.6413(22)$	$0.008(1)$
Nd4	$2 i$	$0.6237(13)$	$0.4545(19)$	$0.5885(24)$	$0.008(1)$
Pd1	$1 a$	0	0	0	$0.008(3)$
Pd2	$1 e$	$1 / 2$	$1 / 2$	0	$0.008(3)$
O1	$2 i$	$0.104(3)$	$0.681(4)$	$0.349(5)$	$0.011(1)$
O2	$2 i$	$0.602(2)$	$0.148(3)$	$0.360(5)$	$0.011(1)$
O3	$2 i$	$0.174(2)$	$0.419(3)$	$0.880(5)$	$0.011(1)$
O4	$2 i$	$0.694(2)$	$0.027(3)$	$0.969(5)$	$0.011(1)$
O5	$2 i$	$0.921(2)$	$0.056(3)$	$0.114(4)$	$0.011(1)$
O6	$2 i$	$0.479(2)$	$0.560(4)$	$0.259(5)$	$0.011(1)$
O7	$2 i$	$0.258(2)$	$0.319(3)$	$0.564(5)$	$0.011(1)$

[^2]TABLE 5
Atomic Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\mathbf{N d}_{4} \mathbf{P d O}_{7}$

Nd1-O2	$2.31(2)$	$\mathrm{Nd} 2-\mathrm{O} 4$	$2.27(2)$
O4	$2.38(2)$	O 2	$2.32(2)$
O1	$2.41(2)$	O 1	$2.36(2)$
O1	$2.43(2)$	O 3	$2.39(2)$
O5	O2	$2.44(2)$	
O6	$2.56(2)$	O 7	$2.54(2)$
O3	$3.02(2)$	O 5	$2.79(2)$
O7	$3.47(2)$	O 6	$3.39(2)$
$\mathrm{Nd} 3-\mathrm{O} 3$	$2.27(2)$	$\mathrm{Nd} 4-\mathrm{O} 2$	$2.27(2)$
O4	$2.37(2)$	O 3	$2.28(2)$
O1	$2.41(2)$	O 4	$2.31(2)$
O7	$2.44(2)$	O 6	$2.45(2)$
O5	$2.46(2)$	O 5	$2.51(2)$
O6	$2.53(2)$	O 7	$2.68(2)$
O3	$2.82(2)$	O 4	$3.74(2)$
O5	$3.22(2)$	$\mathrm{Pd} 2-\mathrm{O} 72 \times$	$2.04(2)$
Pd1-O5 $2 \times$	$2.04(2)$	$\mathrm{O} 62 \times$	$2.07(2)$
O7 $2 \times$	$2.07(2)$	$\mathrm{O} 6-\mathrm{Pd} 2-\mathrm{O} 7$	$85.8(7)$
O5-Pd1-O7	$87.4(6)$		
Pd1-O7-Pd2	$150.4(9)$		

X-ray data, and with a total $\chi^{2}=1.55$. The refined phase fractions of $\mathrm{Nd}_{2} \mathrm{O}_{3}$ and $\mathrm{Nd}_{2} \mathrm{Pd}_{2} \mathrm{O}_{5}$ were 3.8 and 4.6%, respectively, in the sample used for neutron diffraction and 1.9 and 2.2%, respectively, in the X-ray case.

Electron diffraction patterns indicate that the ${L n_{4}}_{4} \mathrm{PdO}_{7}$ phases with $L n=\mathrm{Sm}$ or Gd are isostructural with $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$, and given the XRPD findings above we feel confident in that the Eu compound also has this structure. But reliable refinements of the structures of $\mathrm{Sm}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Gd}_{4} \mathrm{PdO}_{7}$ could not be obtained from X-ray powder diffractometer recordings, particularly so with respect to the positions of the O atoms, due to the relatively large number of positional parameters, 33 , to refine. The derived structure for $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ is, however, seen to be close to C-centered

FIG. 4. Observed (crosses), calculated, and residual XRPD patterns for $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ in the 2θ range $39-61^{\circ}$.

FIG. 5. Observed (crosses), calculated, and residual neutron powder diffraction patterns for $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ in the 2θ range $26-47^{\circ}$.
(cf. Table 4), and simplified structure models for $\mathrm{Sm}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Gd}_{4} \mathrm{PdO}_{7}$ could accordingly be refined in space group $C \overline{1}$. The corresponding residual indices were for $\mathrm{Sm}_{4} \mathrm{PdO}_{7}$ $\mathrm{w} R_{\mathrm{p}}=0.022, R_{\mathrm{p}}=0.017, D \mathrm{wd}=0.91, R_{F}=0.062, \chi^{2}=$ 1.34, and for $\mathrm{Gd}_{4} \mathrm{PdO}_{7} \mathrm{w} R_{\mathrm{p}}=0.021, R_{\mathrm{p}}=0.016, D \mathrm{wd}=$ $0.91, R_{F}=0.061$, and $\chi^{2}=1.18$. It should be stressed, however, that the electron diffraction patterns clearly show that the cell is not C-centered; furthermore, such a symmetry is not compatible with the staggered chains of PdO_{4} squares found in the $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ structure.

Description of the $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ Structure

The crystal chemistry of $\mathrm{La}-\mathrm{Pd}$ oxides, and their structural relationship with the A - and B-type $L n_{2} \mathrm{O}_{3}$ structures, has been admirably described by Attfield and Férey (15). The La-Pd oxides form a series of structures that are in their idealized form built up from a primitive cubic lattice of oxide ions in which Pd^{2+} and Ln^{3+} ions are found at the face and body centers of the O_{8} cubes and thus satisfy the requirements of both a square planar coordination for Pd^{2+} and a high coordination number, ideally 8 , for the Ln^{3+} ions. The structure of $\mathrm{La}_{4} \mathrm{PdO}_{7}$ is monoclinic with symmetry $C 2 / m(10)$, while that of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ exhibits a triclinic distortion of this structure type, with symmetry $P \overline{1}$. Perspective views of corresponding layers in the structures of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ and $\mathrm{La}_{4} \mathrm{PdO}_{7}$ are shown in Fig. 6. A major difference between the structures is that the chains of PdO_{4} squares are straight in the latter structure and staggered in the former, with $\mathrm{Pd}-\mathrm{O}-\mathrm{Pd}$ angles of $150.4(9)^{\circ}$. The observed decrease in lattice symmetry from monoclinic for $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{La}$ to triclinic for $L n=\mathrm{Nd}$ (and $\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$) is directly related to the staggering of these chains. The triclinic cell used here for the latter compounds, $\mathbf{P}_{\text {tri }}$, may be described by an equivalent triclinic cell, $\mathbf{P}_{\mathrm{tr}}^{\prime}$, by the transformation $\quad \mathbf{a}_{\mathrm{tri}}^{\prime}=\mathbf{c}_{\mathrm{tr}}, \quad \mathbf{b}_{\mathrm{tri}}^{\prime}=-\mathbf{a}_{\mathrm{tri}}-\mathbf{b}_{\mathrm{tri}}, \quad \mathbf{c}_{\mathrm{tri}}^{\prime}=-\mathbf{b}_{\mathrm{tri}}-\mathbf{c}_{\mathrm{tri}}$. This transformed cell is in turn related to a smaller primitive
triclinic cell, $\mathbf{P}_{\text {tri }}^{\prime \prime}$, which describes the lattice of $\mathrm{La}_{4} \mathrm{PdO}_{7}$ if its symmetry is directly lowered from $C 2 / m$ to $P \overline{1}$ $\left(\mathbf{a}_{\text {tri }}^{\prime \prime}=1 / 2 \cdot \mathbf{a}_{\text {mon }}-1 / 2 \cdot \mathbf{b}_{\text {mon }}, \mathbf{b}_{\text {tri }}^{\prime \prime}=1 / 2 \cdot \mathbf{a}_{\text {mon }}+1 / 2 \cdot \mathbf{b}_{\text {mon }}, \mathbf{c}_{\text {tri }}^{\prime \prime}\right.$ $=\mathbf{c}_{\mathrm{mon}}$) by $\mathbf{a}_{\mathrm{tri}}^{\prime}=\mathbf{a}_{\mathrm{tri}}^{\prime \prime}, \mathbf{b}_{\mathrm{tri}}^{\prime}=2 \cdot \mathbf{b}_{\mathrm{tr}}^{\prime \prime}, \mathbf{c}_{\mathrm{tri}}^{\prime}=\mathbf{c}_{\mathrm{tri}}^{\prime \prime}$. If, however, the chains of PdO_{4} squares are staggered, half of the inversion centra present in the monoclinic cell, and thus also in the $\mathbf{P}_{\text {tri }}^{\prime \prime}$ cell, are absent, together with the mirror plane and twofold symmetry axis, and the unit cell volume is doubled, e.g., by a doubling of the $\mathbf{b}_{\text {tri }}^{\prime \prime}$ axis.

The triclinic distortion of the $L n_{4} \mathrm{PdO}_{7}$ structures with $L n=\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}$ can be understood as an adaption to shorten the average $L n-O$ distances while retaining the dimensions of the planar PdO_{4} groups. The monoclinic $\mathrm{La}_{4} \mathrm{PdO}_{7}$ structure cannot, e.g, contract in the b axis direction without causing a decrease of the $\mathrm{Pd}-\mathrm{O}$ distances, but the triclinic distortion provides the possibility of a more isotropic decrease of the unit cell dimensions with only minor alterations of the square PdO_{4} units.

Assignment of coordination numbers for the rare-earth atoms is ambiguous for the structures of both $\mathrm{La}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$. In the $\mathrm{La}_{4} \mathrm{PdO}_{7}$ structure the two crystallo-

(b)

FIG. 6. Perspective views of corresponding layers in the structures of (a) $\mathrm{La}_{4} \mathrm{PdO}_{7}$ and (b) $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$, parallel to the planes $(\overline{4} 0 \overline{3})$ and $(\overline{2} 4 \overline{1})$, respectively.

TABLE 6
Enthalpy of Dissolution of $\boldsymbol{L n}_{4} \mathbf{P d O}_{7}$ with $\boldsymbol{L n}=\mathrm{La}$ and Nd

Compound	$\Delta \mathrm{H}_{\mathrm{dis}}^{\circ}\left(\mathrm{kJ} / \mathrm{mol}^{-1}\right)$	$t_{25}(\mathrm{~min})$
$\mathrm{La}_{4} \mathrm{PdO}_{7}$	-974 ± 6	5.6
$\mathrm{Nd}_{4} \mathrm{PdO}_{7}$	-907 ± 23	44.2

graphically different La atoms have 7 and 8 O atoms, respectively, at distances 2.36-3.01 \AA, with an average $\mathrm{La}-\mathrm{O}$ distance of $2.56 \pm 0.21 \AA$. In the $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ structure the four different Nd atoms all have 7 O atoms at distances $2.27-3.02 \AA$, with an average of $2.47 \pm 0.18 \AA$.

Calorimetric and Thermogravimetric Measurements

The obtained values of dissolution enthalpy $\left(\Delta \mathrm{H}_{\mathrm{dis}}^{\circ}\right)$ for the $L n_{4} \mathrm{PdO}_{7}$ oxides are presented in Table 6 together with the corresponding t_{25} values. To minimize systematic errors, calibration substances with t_{25} values as close as possible to those of the $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ oxides were chosen, i.e., $\mathrm{Nd}_{2} \mathrm{O}_{3}$ in the $\mathrm{La}_{4} \mathrm{PdO}_{7}$ case and $\mathrm{Gd}_{2} \mathrm{O}_{3}$ in the case of $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$, see also Tables 1 and 6.
The following reaction was assumed to describe the dissolution of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$

$$
\begin{align*}
& L n_{4} \mathrm{PdO}_{7}(\mathrm{~s})+14 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \rightarrow 4 L^{3+}(\mathrm{aq})+\mathrm{PdCl}_{4}^{2-}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{3}
\end{align*}
$$

The enthalpies of formation of $L n_{4} \mathrm{PdO}_{7}$ with $\mathrm{Ln}=\mathrm{La}$ and Nd were calculated using available values (9) for enthalpy of formation of the involved ions and $\mathrm{H}_{2} \mathrm{O}(1)$. The obtained $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ values are listed in Table 7. $\left(\Delta \mathrm{H}_{\mathrm{f}}\right.$ for PdCl_{4}^{2-} used in the calculations was calculated from Ref. 16, using $\Delta \mathrm{H}_{\mathrm{f}}$ data for Cl^{-}and Pd^{2+} from Ref. 9.)

In order to be able to calculate the $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$ values for these $L n_{4} \mathrm{PdO}_{7}$ oxides, we determined the decomposition temperatures in oxygen of these oxides, see Table 7, by means of a TG unit. The XRPD patterns of the decomposed materials matched those of $L n_{2} \mathrm{O}_{3}$ and Pd , with some additional weak

TABLE 7

Calculated Enthalpy and Entropy of Formation, $\Delta \mathbf{H}_{\mathrm{f}}^{\circ}$ and $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$, and Decomposition Temperature, $\boldsymbol{T}_{\mathrm{dec}}$, of $\boldsymbol{L n _ { 4 }} \mathrm{PdO}_{7}$ with $L n=\mathrm{La}$ and Nd

Compound	$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{kJ} / \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{S}_{\mathrm{f}}^{\circ}\left(\mathrm{J} / \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	$T_{\mathrm{dec}}(\mathrm{K})$
$\mathrm{La}_{4} \mathrm{PdO}_{7}$	-3755 ± 7	-672	1645 ± 10
$\mathrm{Nd}_{4} \mathrm{PdO}_{7}$	-3778 ± 24	-670	1540 ± 10

[^3]

FIG. 7. Ellingham diagram showing the Gibbs free energy $\left(\Delta \mathrm{G}^{\circ}\right)$ for the following reactions as a function of temperature: (a) $2 \mathrm{Nd}_{2} \mathrm{O}_{3}(\mathrm{~s})+$ $\mathrm{Pd}(\mathrm{s})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Nd}_{4} \mathrm{PdO}_{7}(\mathrm{~s}) ; \quad$ (b) $\quad 2 \mathrm{La}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Pd}(\mathrm{s})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{La}_{4} \mathrm{PdO}_{7}(\mathrm{~s}) ; \quad$ (c) $\quad \mathrm{Pd}(\mathrm{s})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PdO}(\mathrm{s}) ; \quad$ (d) $\mathrm{CO}(\mathrm{g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{CO}_{2}(\mathrm{~g})$.
reflections matching $\mathrm{La}(\mathrm{OH})_{3}$ for $L n=\mathrm{La}$. (DTA runs were also performed to verify that no phase transitions occurred in the interval from room temperature up to the decomposition temperature of the $L n_{4} \mathrm{PdO}_{7}$ oxides.) Because $\Delta \mathrm{G}^{\circ}$ for the decomposition reaction

$$
\begin{equation*}
L n_{4} \mathrm{PdO}_{7}(\mathrm{~s}) \rightarrow 2 \operatorname{Ln}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Pd}(\mathrm{~s})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \tag{4}
\end{equation*}
$$

must be zero at the decomposition temperature, and $\Delta \mathrm{H}^{\circ}$ for the reaction can be calculated using $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$-values for $L n_{2} \mathrm{O}_{3}$ from Ref. (9); assuming that the enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\right)$ of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ is temperature independent, $\Delta \mathrm{S}^{\circ}$ of reaction [4] can be calculated from the relation $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$. Since $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$ values are available (9) for $L n_{2} \mathrm{O}_{3}, \Delta \mathrm{~S}_{\mathrm{f}}^{\circ}$ values for $L n_{4} \mathrm{PdO}_{7}$ could be calculated, and the obtained results are given in Table 7.

Using the enthalpies and entropies of formation thus obtained for the $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ compounds, together with literature data (see below), an Ellingham diagram (Fig. 7) was constructed to visualize the redox chemistry of the oxides. $\Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ values for $L n_{2} \mathrm{O}_{3}$ were calculated from room temperature up to the decomposition temperature of the corresponding $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ compound, using the computer program "HSC Chemistry" (9), and the obtained values were used together with our data given above for $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ to construct the lines denoted a and bin Fig. 7. The c and d lines in the diagram were directly obtained by plotting calculated $\Delta \mathrm{G}^{\circ}$ values (9) of the indicated reaction vs the temperature.

FIG.8. Plot showing calculated decomposition temperatures for (a) $\mathrm{La}_{4} \mathrm{PdO}_{7}$, (b) $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$, and (c) PdO as a function of oxygen partial pressure.

Using the thermodynamic data given above, it is also possible to predict the decomposition temperatures of $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ as a function of oxygen pressure, using

$$
\left.\begin{array}{rl}
T_{\mathrm{dec}}= & \left(2 \Delta \mathrm{H}_{\mathrm{f}, L n_{2} \mathrm{O}_{3}}^{\circ}-\Delta \mathrm{H}_{\mathrm{f}, L n_{4} \mathrm{PdO}}^{7}\right) /\left(2 \Delta \mathrm{~S}_{\mathrm{f}, L n_{2} \mathrm{O}_{3}}^{\circ}-\Delta \mathrm{S}_{\mathrm{f}, L n_{4} \mathrm{PdO}}^{7}\right.
\end{array}\right)
$$

and the $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ and $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$ values of $L n_{2} \mathrm{O}_{3}$ with $L n=\mathrm{La}$ and Nd given in Ref. 9. The calculated decomposition temperatures of these two $\mathrm{Ln}_{4} \mathrm{PdO}_{7}$ oxides at selected oxygen pressures are presented in Fig. 8 together with the corresponding figures for PdO for comparison.

From the Ellingham diagram given in Fig. 7 it can be seen that the $L n_{4} \mathrm{PdO}_{7}$ compounds with $L n=\mathrm{La}$ and Nd are more stable than $2 \mathrm{La}_{2} \mathrm{O}_{3}+\mathrm{PdO}$ at all temperatures, and our calculations show that this stabilization is clearly an enthalpy effect in the La case, whereas in the Nd case it is more difficult to make such a definite statement. It is also evident from the Ellingham diagram that reduction of these $L n_{4} \mathrm{PdO}_{7}$ compounds to Pd and $L n_{2} \mathrm{O}_{3}$ is possible at all temperatures using carbon monoxide as the reducing agent. However, in a previous article (3) we have shown that reduction of $\mathrm{La}_{4} \mathrm{PdO}_{7}$ and $\mathrm{Nd}_{4} \mathrm{PdO}_{7}$ with CO does not take place until at about 812 and 848 K , respectively, and we ascribe this to the decomposition reaction being kinetically retarded.

Magnetic Susceptibility

$\mathrm{La}_{4} \mathrm{PdO}_{7}$ was observed to be diamagnetic in the temperature range investigated $(10-320 \mathrm{~K})$, and to have a susceptibility of the order of $-1.6 \times 10^{-9} \mathrm{~m}^{3} / \mathrm{mol}^{-1}$. The Pd atoms thus do not give rise to any temperature-dependent para-

FIG. 9. The square of the effective number of Bohr magnetons as a function of temperature for $L n_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$ (left vertical axis) and Gd (right vertical axis).
magnetic signal. Figure 9 shows the square of the measured effective number of Bohr magnetons, $\mu_{\text {eff }}^{2}$, as a function of temperature for $L n_{4} \mathrm{PdO}_{7}$ with $L n=\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, and Gd . Corrections for diamagnetism and sample holder were applied to these data, but were found to be negligible. The temperature dependencies of $\mu_{\text {eff }}^{2}$ are qualitatively those expected for noninteracting Ln^{3+} ions (17), e.g., calculated using Van Vleck's equation and accounting for contributions from excited states. Expected and observed $\mu_{\text {eff }}$ values at room temperature are for $\mathrm{Nd} 3.3,3.5$, for $\mathrm{Sm} 1.5,1.4$, for Eu 3.5, 3.3, and for Gd 7.9, 7.7, respectively. Thus the data show no indications of any significant magnetic interactions between the rare-earth atoms in the compounds.

ACKNOWLEDGMENTS

The authors thank Mr. H. Rundlöf (Studsvik) for the collection of neutron diffraction data and Prof. L. Kihlborg for recording the electron diffraction patterns. This work has been financially supported by the Swedish Research Council for Engineering Sciences.

REFERENCES

1. M. Andersson, K. Jansson, and M. Nygren, Catalysis Letters 39, 253 (1996).
2. M. Andersson, K. Jansson, and M. Nygren, Thermochimica Acta 318, 83 (1998).
3. M. Andersson, K. Jansson, and M. Nygren, J. Mater. Chem. 9, 265 (1999).
4. C. L. McDaniel and S. J. Schneider, J. Res. Nat. Bur. Stand., Phys. Chem. 72A (1), 27 (1968).
5. B. G. Kakhan, V. B. Lazarev, and I. S. Shaplygin, Russ. J. Inorg. Chem. 27 (8), 1180 (1982).
6. B. G. Kakhan, V. B. Lazarev, and I. S. Shaplygin, Russ. J. Inorg. Chem. 27 (9), 1352 (1982).
7. K. E. Johansson, T. Palm, and P-E. Werner, J. Phys. 13, 1289 (1980).
8. A. C. Larson, and R. B. Von Dreele, Los Alamos National Laboratory Report No. LA-UR-86-748 (1987).
9. "HSC Chemistry," computer program by A. Roine, Outokumpu Research Oy., Pori, Finland.
10. J. P. Attfield, Acta Crystallogr., Sect. B 44, 563 (1988).
11. J.-F. Berár and P. Lelann, J. Appl. Crystallogr. 24, 1 (1991).
12. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
13. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).
14. J. X. Boucherle, Acta Crystallogr., Sect. B 31, 2745 (1975).
15. P. Attfield, and G. Férey, J. Solid State Chem. 80, 286 (1989).
16. T. Ryhl, Acta Chem. Scand. 26 (7), 2961 (1972).
17. M. M. Schieber, "Experimental Magnetochemistry." North-Holland, Amsterdam, 1967.

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

[^1]: Note. The triclinic cell parameters for $\mathrm{La}_{4} \mathrm{PdO}_{7}$ are converted from the true monoclinic cell given in Ref. (10).

[^2]: Note. Triclinic, $a=15.972(2), \quad b=7.1927(7), \quad c=6.9160(6) \AA, \quad \alpha=$ $96.299(4)^{\circ}, \beta=131.643(3)^{\circ}, \gamma=121.438(3)^{\circ}, Z=2, P-1$.

[^3]: Note. The errors in $\Delta \mathrm{S}_{\mathrm{f}}^{\circ}$ can be calculated by dividing the $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ errors by T_{dec}.

